
Proceedings of the Thirtieth International Conference on Automated Planning and Scheduling (ICAPS 2020)

Predicting the Effectiveness of Bidirectional Heuristic Search

Nathan R. Sturtevant
Dept. of Computing Science

University of Alberta
Edmonton, AB, Canada
nathanst@ualberta.ca

Shahaf Shperberg
CS Department

Ben-Gurion University
Be’er-Sheva, Israel

shperbsh@post.bgu.ac.il

Ariel Felner
ISE Department

Ben-Gurion University
Be’er-Sheva, Israel
felner@bgu.ac.il

Jingwei Chen
Dept. of Computing Science

University of Alberta
Edmonton, AB, Canada
jingwei5@ualberta.ca

Abstract

The question of when bidirectional heuristic search outper-
forms unidirectional heuristic search has been revisited nu-
merous times in the field of Artificial Intelligence. This paper
re-addresses the question of when bidirectional search out-
performs unidirectional search using an updated theoretical
understanding of the problem. We show that a core set of
critical states in the state space are the primary factor de-
termining whether a bidirectional search can outperform a
unidirectional search and provide simple measures to deter-
mine whether a state space and heuristic contains these crit-
ical states. We similarly discuss and show the impact that
asymmetry in the underlying problem graph has on the per-
formance of bidirectional algorithms. Experimental results
show the impact of these factors on whether a problem should
be solved using unidirectional or bidirectional search.

1 Introduction

In the past few years the understanding of bidirectional
search has improved significantly, with new theory and new
search algorithms. But, an outstanding question remains:
when will bidirectional search be more effective than unidi-
rectional search? There have been two recent answers to this
question. Barker and Korf (2015) posited that with a strong
heuristic, A* will always be preferred, but that with a weak
heuristic, bidirectional brute force search will be preferred.
Holte et al. (2017) refined this by looking at whether algo-
rithms will expand states that are near, far, or remote from
the start and the goal respectively.

There are four weaknesses in these analyses. First, both
piece of work assume that the bidirectional search frontiers
meet in the middle of the optimal path. While this is true for
the MM algorithm (Holte et al. 2017), state-of-the-art algo-
rithms like NBS (Chen et al. 2017) and DVCBS (Shperberg
et al. 2019) will rarely meet in the middle, and thus the anal-
yses do not fully apply to these algorithms. Second, Barker
and Korf (2015) assume symmetric state spaces, which does
not hold in practice. Third, these analyses predate the theory
that fully describes the necessary expansions in bidirectional
search (Eckerle et al. 2017b) that gives a fuller picture of

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

bidirectional search. Finally, both analyses require solving
problem instances to measure performance and do not pro-
vide inexpensive predictive measures to determine whether
bidirectional search will outperform unidirectional search.

This paper addresses these weaknesses by providing an
analysis which is directly based on the new theory of bidi-
rectional search (Eckerle et al. 2017b; Chen et al. 2017;
Shaham et al. 2017). In particular, the necessary expansions
to solve a problem can be described through a bipartite must-
expand graph (GMX). The minimum vertex cover of GMX
(MVC) determines the minimum number of node expan-
sions needed to solve a problem. If the MVC is bidirectional
there exists a bidirectional algorithm that outperforms any
unidirectional algorithm.

However, as with past analysis, building GMX and find-
ing the MVC is expensive. Therefore, we analyze the nature
of the MVC to understand when it will be bidirectional. We
then devise measures that predict whether the MVC will be
unidirectional or bidirectional. These measures can be ap-
plied without solving a problem and without building GMX.
Experiments illustrate that these measures are predictive of
the properties of the MVC and also that state-of-the-art bidi-
rectional algorithms like NBS and DVCBS are able to out-
perform unidirectional A* when the MVC is bidirectional.

1.1 Definitions and Terminology

A shortest-path problem instance, I , is defined as a n-
tuple (G = {V,E}, start, goal, hF , hB). G is a graph,
start, goal ∈ V and the aim is to find the least-cost
path (with cost C∗) between start and goal. Unidirec-
tional search algorithms search forward from the start to
the goal and never expand the goal. Bidirectional search al-
gorithms interleave two separate searches, a search forward
from start and a search backward from goal. fF , gF and hF

indicate f -, g-, and h-costs in the forward search and fB , gB
and hB similarly in the backward search. d(x, y) denotes the
shortest distance between x and y, so d(start, goal) = C∗.
Front-to-end algorithms use two heuristic functions. The
forward heuristic, hF , is forward admissible iff hF (u) ≤
d(u, goal) for all u in G and is forward consistent iff
hF (u) ≤ d(u, u′) + hF (u

′) for all u and u′ in G. The back-
ward heuristic, hB , is defined analogously. Front-to-front

281

bidirectional search algorithms are outside the scope of this
paper.

Let IAD be the set of problems with admissible heuris-
tics, and ICON ⊆ IAD be the set of problems with consistent
heuristics. An algorithm is admissible if it returns an optimal
solution, but the admissibility of an algorithm must be qual-
ified with the set of problems on which it is admissible. The
analysis in this paper primarily concerns the performance of
algorithms that are admissible on IAD when solving prob-
lems in ICON. We will discuss this further when introducing
the theory of bidirectional search in Section 3.

2 Previous Bidirectional Analysis

Recent analysis of bidirectional and unidirectional search
provided explanations of when each approach will work
well. But, these analyses assume that the bidirectional search
frontiers will meet in the middle of the optimal path and also
require solving problem instances to measure properties of
the given search tree. Thus, they are only useful after solving
problem instances. We next provide an overview on these
analyses.

2.1 Barker and Korf Conjecture

Barker and Korf (2015) (Denoted BK) defined a unidirec-
tional heuristic as weak if it expands the majority of its
nodes deeper than the solution midpoint (12C

∗). A unidi-
rectional heuristic is strong if the majority of states ex-
panded are at shallower depth than the solution midpoint.
Based on these two definitions they made the following con-
jectures: BK1: Adding a weak heuristic to a bidirectional
brute-force search cannot prevent it from expanding addi-
tional nodes. BK2: With a strong heuristic, a bidirectional
heuristic search expands more nodes than a unidirectional
heuristic search.

These conjectures are under the assumption that the for-
ward and backward searches are of roughly equivalent diffi-
culty and with similar search trees, and that they meet in the
middle. Furthermore, their definition of a weak and a strong
heuristic depends on the problem instance being solved; no
analysis is provided to determine if a heuristic is strong or
weak without fully solving a given problem instance.

2.2 Holte General Rule 2

Holte et al. (2017) developed the MM bidirectional heuristic
search algorithm which is guaranteed to meet in the middle.
i.e., MM will never expand a state whose g-value exceeds
C∗/2. This is achieved by MM’s novel selection criterion
and priority functions, prF (u) and prB(u) for the forward
and backwards directions, respectively:

prF (u) = max(gF (u) + hF (u), 2 · gF (u))
prB(v) = max(gB(v) + hB(v), 2 · gB(v))

MM expands a state with minimum priority from either di-
rection. They also described three general rules that char-
acterize the performance of unidirectional and bidirectional
heuristic search. One of them, denoted GR2, is most relevant
to the analysis in this paper. GR2 relies on sets of nodes that
are determined by their distances from the start and the goal.

The set FF includes all states that A* might expand but MM
will not. These are nodes with gF (n) >

1
2C

∗ and gB(n) >
1
2C

∗. The set RN includes all states MM will expand but A*
will not. These are nodes with gF (n) > C∗ and gB(n) ≤
1
2C

∗. Then, GR2 is:
GR2: When |FF | > |RN |, A* will expand more nodes

than MM if the heuristic is weak but will expand fewer nodes
than MM if heuristic is very accurate.

This is in line with BK2; with a strong heuristic, A* tends
to outperform bidirectional heuristic search. However, here
too, it isn’t clear what makes a heuristic very accurate or
strong. Furthermore, a problem instance needs to be fully
solved so as to know the size of the different sets in order to
make a prediction based on these rules.

3 Bidirectional Theory

We base our predictive measures on the theory of bidirec-
tional search, which is described in this section.

With an admissible heuristic, any admissible unidirec-
tional algorithm meeting reasonable theoretical assumptions
must expand all states with f(n) < C∗ in order to prove
the optimal solution (Dechter and Pearl 1985). Eckerle et al.
(2017b) generalized this to bidirectional search and showed
that in bidirectional search necessary expansions are defined
for pairs of states u and v in the forward and backward fron-
tiers, respectively. The lb function measures the minimum
cost path that can connect start and goal via u and v.

Definition 1. For each pair of states (u, v) let

lb(u, v) = max{fF (u), fB(v), gF (u) + gB(v)}
In bidirectional search, a pair of states (u, v) is called a

must-expand pair if lb(u, v) < C∗. However, in a must-
expand pair only one of u or v must be expanded, not both.
An algorithm that neither expands u nor expands v when
lb(u, v) < C∗ may miss the optimal solution. The analysis
in this paper is purely with respect to necessary expansions.

3.1 The Must-Expand Graph (GMX)

The unique property of the must-expand condition is that it
contains an or between the nodes, also a feature of the vertex
cover problem. Chen et al. (2017) showed how to represent
the necessary expansions conditions as a vertex cover on a
must expand graph denoted by GMX :

Definition 2. The Must-Expand Graph GMX on a problem
instance is an undirected, unweighed bipartite graph. For
each state s ∈ G, there are two vertices in GMX, the left
vertex sF representing the state in the forward direction and
the right vertex sB representing the state in the backwards
direction. For each pair of states m,n ∈ G, there is an edge
in GMX between mF and nB if and only if (mF , nB) is a
must-expand pair.

It follows that the minimum number of node expansions
required to solve a problem instance by bidirectional heuris-
tic search is the size of the minimum vertex cover of GMX,
denoted hereafter as MVC.

Definition 1 is valid for problems in ICON with algorithms
that are admissible on IAD. Alternate definitions of lb (or

282

equivalent functions) exist for state spaces with ε > 0 edge
costs (Shaham et al. 2018), for state spaces with consistent
heuristics (Shaham et al. 2018), and for front-to-front search
(Eckerle et al. 2017b).

The analysis here is presented only for the simplest case.
It can be trivially extended to ε edge costs. The extension
to algorithms that are admissible on ICON but not on IAD
(Alcázar, Riddle, and Barley 2020) is an important matter
of future work, as this information can be used to signifi-
cantly improve performance. But, the high-level point ap-
plies:1 The MVC of the appropriate GMX graph describes
the minimal node expansions required to prove an optimal
solution to any problem.

Figure 1(a) shows a GMX graph for a sample 20-pancake
problem instance with C∗ = 13 with the GAP heuris-
tic (Helmert 2010). Each vertex is labeled internally with its
g-cost. The left vertices are sorted by increasing gF -costs,
while right vertices are sorted by decreasing gB-cost. Ad-
ditionally, nodes with the same gF or gB are merged into a
single (weighted) vertex, and the weight of that vertex, the
total number of merged nodes, is written adjacent to the ver-
tex. In this ordering, each horizontal pair of vertices u and v
have gF (u) + gB(v) = C∗ − 1, which, in Figure 1(a), is 12.
For simplicity the figure draws a full edge from a left node
u to a right node v only if u has no edges to right nodes with
gB larger than gB(v); similarly for right nodes. Only the pre-
fix of other edges is shown. For example there is a full edge
in the figure from the node with gF = 5 to the node with
gB = 7 but this node is also connected to all nodes with
gB < 7 as shown by the prefixes of edges.

3.2 MVC of GMX

Let tF and tB be thresholds such that tF + tB = C∗ − 2.
There is a family of contiguous vertex covers (VCs) for all
such pairs (tF , tB), where all nodes with gF ≤ tF in GMX
are included in the forward direction of this VC, and all
nodes with gB ≤ tB are included in the backward direc-
tion of this VC. It was proven that one such (tF , tB) par-
tition is the MVC (Shaham et al. 2017) and is denoted by
(t∗F , t

∗
B). The number of nodes of the (tF , tB)-VC partitions

is determined by summing up the weights of the nodes with
gF ≤ tF and with gB ≤ tB . These costs are shown in Figure
1(a)–1(c) at the crossing point, i.e., right between the respec-
tive values of tF and tB . For example, consider Figure 1(b).
In the figures, the nodes of the MVC partition are colored.
For this example the MVC partition is ((t∗F , t

∗
B) = (4, 7))

and include 776,458 nodes. We note that a forward unidirec-
tional partition, (forward VC), is (12,∅) (1,672,402 nodes)
with a crossing point above the graph and a backward uni-
directional partition, (backward VC), is (∅, 12) (819,651
nodes) with a crossing point below the graph.

For simplicity we will typically assume, without loss of
generality, that the forward unidirectional partition (i.e., a
(C∗−1,∅) partition) includes fewer nodes than a backwards
unidirectional partition (a (∅, C∗ − 1) partition). Thus, the

1The statement only applies to deterministic and expansion-
based algorithms (denoted as DXBB by Eckerle et al. (2017a)),
which is a standard assumption for heuristic search algorithms.

start state is always included in MVC. The aim of this pa-
per is to provide insight on when (t∗F , t

∗
B) is non-null (i.e.,

t∗F , t
∗
B �= ∅).

3.3 Fractional MM (fMM(p))

fMM(p) (Shaham et al. 2017) is a generalization of MM that
never expands nodes in the forward direction whose g-value
exceeds C∗/p, and never expands nodes in the backward
direction whose g-value exceeds C∗/(1 − p). For a given
fraction 0 < p < 1, fMM(p) chooses a node for expansion
according to the following priority functions:

prF (u) = max(gF (u) + hF (u), gF (u)/p)

prB(u) = max(gB(u) + hB(u), gB(v)/(1− p))

Shaham et al. (2017) showed that for every problem in-
stance, there exists a fraction p∗ = t∗F /(t

∗
F + t∗B + 1) such

that fMM(p∗) is optimally efficient and will expand exactly
the MVC of GMX. Thus, in theory, not only we can know
whether a problem instance is bidirectional or not but we
also have an algorithm that will expand exactly the minimal
number of nodes required to guarantee the optimality of its
solution. In practice, however, this can only be done after C∗
is known and GMX is built. Furthermore, there are no guar-
antees if fMM does not search with p∗. Thus, in the rest of
this paper we look for a method to predict whether the MVC
is bidirectional or not without building GMX.

4 Conditions for a Bidirectional MVC

Given the bidirectional theory, the following definitions can
be used to classify whether bidirectional search is the best
approach for a problem instance.
Definition 3. A problem instance is bidirectional if at least
one MVC of GMX contains vertices on both sides of GMX.
Definition 4. A problem instance is unidirectional if at least
one MVC of GMX only contains nodes on one side of GMX.
Definition 5. A problem instance is weakly bidirectional if
it is both bidirectional and unidirectional.

The problem instance in Figure 1(c) is weakly bidirec-
tional because there are two possible MVCs which result in
the same number of node expansions, one is bidirectional
(11, 0) and one is unidirectional (12,∅).

If we know the full structure of GMX we can determine
whether the problem instance is unidirectional or bidirec-
tional. However, since GMX is not known in advance and is
costly to build, we aim instead to predict beforehand whether
the problem instance is bidirectional or unidirectional. To do
this, we identify a set of critical states (defined below) that
impact this prediction. We then show how we can test for
these critical states.

We begin with an analysis of the three GMX graphs of
the 20-pancake problem in Figure 1 each having a different
heuristic. Consider Figure 1(a) with the GAP heuristic. The
critical states for this problem have gF -cost between 8-12
and are marked with a red box. The key feature here is that
the weight of these vertices is 0. In a unit-cost domain like
the pancake puzzle, there must be states in the solution with
all g-costs between 0 and C∗. But, if these states have perfect

283

2,666

2,667

2,686

2,945

3,784

4,316

4,460

4,368

3,965

3,048

2,129

1,879

1,860

1,859

01

119

2259

3839

4534

5173

631

73

80

90

100

110

120 0 1

1 19

2 250

3 919

4 917

5 406

6 123

7 29

8 2

9 0

10 0

11 0

12 0

gF gB

80

90

100

110

120

start

goal

819,651

819,559

818,598

812,680

790,315

776,458

937,708

1,244,105

1,479,697

1,608,283

1,657,171

1,669,879

1,672,144

1,672,402

01

119

2342

36,155

478,497

5367,637

6574,862

7400,861

8174,008

954,427

1013,050

112,284

12259 0 1

1 19

2 342

3 5,539

4 45,422

5 165,269

6 268,465

7 206,387

8 92,354

9 28,520

10 6,260

11 980

12 93

gF gB
29,391

29,390

29,401

29,724

35,101

42,483

46,789

44,964

37,149

28,517

23,161

22,826

22,810

22,810

01

119

2342

35,474

47,802

55,786

62,447

7730

8162

936

107

113

121 0 1

1 19

2 342

3 5,392

4 8,794

5 8,545

6 4,272

7 1,480

8 420

9 97

10 19

11 8

12 2

gF gB

(a) GAP (b) GAP\2 (c) GAP×0.9

Figure 1: GMX figures for a 20-Pancake instance

heuristics, they will not be part of GMX, since states must
have f < C∗ to appear in GMX.

Recall that an MVC has two thresholds, t∗F and t∗B . Given
the unidirectional (12,∅)-VC in Figure 1(a) (1859 nodes),
the question is whether using a larger tB could improve
the VC. The (11, 0)-VC, includes one additional node in
the backwards direction (the goal) but there is no reduction
of nodes in the forward direction. The (10, 1)-VC adds 19
nodes in the backwards direction, again with no savings in
the forward direction. The first VC that reduces the nodes
in the forward direction is the (6, 5)-VC, which has 2,512
backward nodes (sum of levels 0–5) in order to reduce 3 for-
ward nodes (sum of levels 7–12). So, the unique MVC is
unidirectional in Figure 1(a) because the states in GMX with
g-cost close to C∗ all have perfect hF -values or high enough
hF -values that exclude them from GMX. The large number
of nodes in GMX with weight of 0 make it difficult for a
bidirectional search to outperform a unidirectional search.

Now consider Figure 1(b) (GAP\2 heuristic where gaps
involving tokens 1 and 2 are omitted from the heuristic). In
this example, all vertices in GMX have weights > 0. Includ-
ing the first backward node in the (11, 0)-VC already saves
259 forward nodes (a net gain of 258). This implies that all
MVCs are bidirectional when there are many states in GMX
with g-cost close to C∗ with inaccurate heuristics.

Note that to be included in GMX, the states with gF = 12
must have hF < 1, the states with gF = 11 must have hF <
2 and similarly for other states. Thus, the two properties of
the critical states are that they (1) have large gF -cost and
(2) have inaccurate and small hF -cost so that their f -value
is < C∗ and they appear in GMX. Trivially, states having
perfect h-cost on the optimal path are not critical, and they
will not appear in GMX.

Definition 6. Critical states for k < C∗ are those that have
gF > C∗ − k and hF < C∗ − gF (or symmetrically in the
backwards direction).

This leads us to our main claim:
Corollary 1. If there exists some k such that there are more
critical states for k than states with gB < k in the backward
direction of GMX (those with hB < C∗−gB) then all MVCs
will be bidirectional.

Note that this definition is similar to the BK definition of
a weak heuristic for k = C∗/2. But, under the BK formula-
tion, the heuristic in Figure 1(b) is strong – the majority of
states expanded are found in the first half of each of the uni-
directional searches – and so unidirectional search should
outperform bidirectional search by their reasoning. (C∗ is
13, so the g-costs 0-6 are in the first half of the search.) In
this example there are enough critical states even for k = 1
(259 states) such that the MVC is bidirectional.

4.1 Measuring Critical States

The definition of critical states depends on both the g-cost
and h-cost of states. While h-costs can be sampled in gen-
eral, g-costs are instance dependent. However, states near
the goal must have gF -costs that are close to C∗. Thus, we
propose two measurements that estimate the existence and
frequency of critical states in the state space. The first mea-
surement (M1) samples states near the goal to see what per-
centage of them have inaccurate heuristics. The second mea-
surement (M2) is the ratio between the total number of states
with low heuristic values that are not near the goal and the
total states near the goal. The larger the ratios returned by
M1 and M2 the more potential critical states there are. But,
because we cannot measure gF , we cannot guarantee that
they are critical states in practice. The more states that have

284

the potential to be critical states, the greater the likelihood
that some of them are and the MVC is bidirectional.

The procedure for M1 is relatively simple and is compu-
tationally inexpensive. M1 does a backwards Dijkstra search
from the goal up to a distance (radius) rM1, counting the to-
tal number of states seen with gB ≤ rM1. The number of
such states is denoted by sg≤rM1

. M1 also counts the total
number of states seen with both gB ≤ rM1 and hF ≤ rM1;
the number of these states is denoted by sh≤rM1

. M1 is
then reported as the percentage of states seen with inaccu-
rate heuristics, i.e, M1 = sh≤rM1

/sg≤rM1
. If M1 is 100%

then the MVC will be at least weakly bidirectional because
for rM1 = 0 there is at least one critical state — the last
node on the optimal path before the goal.

There are several procedures that can be used to compute
M2. The most general procedure is to sample random states
in the state space and measure whether the heuristic is less
than some fixed value hM2. From this sample we can es-
timate the total number of states with hF (s) ≤ hM2 in
the entire state space, ŝh≤hM2

. If the search space size |S|
of the given problem is known, as in the domains exam-
ined in this paper, ŝh≤hM2

can be estimated by sampling k
random states, and counting those with hF (s) ≤ hM2 (de-
noted by kh≤hM2

); formally, ŝh≤hM2
= |S| · kh≤hM2

k . Oth-
erwise, if search space size is unknown, an estimation of |S|
(Lelis, Stern, and Sturtevant 2014) can be used. In addition,
sh≤hM2

and sg≤hM2
are defined analogously to sh≤rM1

and
sg≤rM1

. M2 is then the ratio between the states with inaccu-
rate heuristics farther from the goal to the number of states
near the goal, i.e., M2 = (ŝh≤hM2

− sh≤hM2
)/sg≤hM2

.

The accuracy of sampling depends on the number of sam-
ples and the size of the search space. But, for many types
of heuristics, M2 can be measured more precisely. Con-
sider, for instance, a grid world with straight-line distance
as a heuristic. For a given goal state we can directly count
Sh≤hM2

and sh≤hM2
by iterating over the local neighbor-

hood of the goal. This is called direct sampling.

In pattern databases (PDBs) (Culberson and Schaeffer
1996), the PDB stores the distance from each pattern to
the goal, where a pattern abstracts away some state liter-
als. In Rubik’s Cube, a PDB might abstract all edge cubes
and only store the distances for configurations of corner
cubes. Although there is only one entry in the PDB with
the value 0 in this heuristic, there are 12! × 211 possi-
ble edge cube configurations for each configuration of cor-
ner cubes. Thus, once M1 is measured near the goal, M2
can be computed from the PDB distribution in the original
state space. The procedure is more complex when the max
or sum of multiple PDBs is used (Korf and Felner 2002;
Holte et al. 2006), but it is still possible to perform similar di-
rect measurements of Sh≤hM2

in this situation. For instance,
assume we are taking the sum of PDBs p1 and p2, where the
patterns for p1 and p2 are disjoint and cover all variables
in the PDB. Then, we can find the states in each PDB with
h ≤ hM2. Finally, we can test if the disjoint patterns can be
combined into a legal state s with hp1

(s) + hp2
(s) ≤ hM2.

4.2 Asymmetry

As mentioned before, the BK analysis assumes that the dif-
ficulty of solving a problem in the forward and backwards
directions is approximately the same. They do note, how-
ever, that if one direction is far more difficult than the other,
bidirectional search may still perform well.

Expanding on this, consider a road network, where the
density of roads in the city is much larger than the density
in the countryside. If the start state is in the middle of a city
and the goal in the countryside, it may be more efficient to
search in reverse towards the start state, as the reverse search
can terminate when it reaches the start, avoiding extra search
inside the city. Although the best unidirectional search may
always outperform the best bidirectional search, if the best
search direction isn’t known, a bidirectional search may still,
on average, outperform an unidirectional search with an ar-
bitrary direction.

When the MVC is unidirectional, bidirectional algorithms
like NBS (Chen et al. 2017) will do at most twice the work of
the best unidirectional search. Because the best direction for
A* search is not known, on expectation A* (with an arbitrary
direction) will do the average of the two possible unidirec-
tional searches. Thus, on symmetric problems with similar-
sized forward and backwards searches and low M1 and M2
measurements, A* will always expand close to the MVC as
in Figure 1(a).

With asymmetric forward and backwards searches the
average of the nodes in the two directions will be larger
than the best unidirectional VC. Thus, the difference be-
tween twice the minimum unidirectional search and the av-
erage forward and backwards search will be reduced, im-
proving the performance of bidirectional search relative to
unidirectional search even without a bidirectional MVC. If
all MVCs are bidirectional, bidirectional algorithms are ex-
pected to have an even larger advantage over unidirectional
algorithms. Thus, we propose a third measure of asymmetry,
M3. M3 samples states in the state space and performs U
Dijkstra expansions from each sampled state, recording the
maximum g-cost expanded. Intuitively, if the maximum g-
cost seen differs in each search, then the state space is more
asymmetric. Let � be the number of samples. Let x be the
most common maximum g-cost that was seen in these sam-
ples. Let m be the number of times x was seen. Then M3
is 1−m/�. So, if, in 10 samples the same maximum g-cost
is seen, M3 will be 0%. If a different g-cost is seen in each
sample, then M3 will be 90%.

4.3 Summary

We summarize the impact of these measures with rules:
Rule 1: If M1 is high (close to 100%) and M2 and M3

are low, there are only critical states near the goal. Thus,
the problem instance will be weakly bidirectional, or close
to that, i.e., the difference between the unidirectional VC
(UVC) and the MVC will be small.

Rule 2: If M2 is large there are many critical states and
all MVCs are expected to be bidirectional.

While rules 1-2 predict whether MVCs will be bidi-
rectional, rule 3 predicts the performance of bidirectional
search algorithms.

285

Rule 3: If M3 is high (greater than 50%), the number of
expansions by bidirectional algorithms such as NBS will be
much less than 2x the expansions of an arbitrary A* even if
M1 and M2 are low and the MVC is unidirectional.

With regard to sampling, we recommend choosing some
hM2 < C∗/2 which is as large as can be sampled efficiently
on a given domain/heuristic combination.

4.4 Limitations

The measures and rules proposed in this paper are the first
measures that do not require solving a problem to estimate
whether the MVC is bidirectional. However, they are still
estimates, and subject to the following weaknesses.

First, for any rM1 or hM2 used for sampling, an adver-
sary could structure a problem such that all critical states
are found for a parameter that is slightly larger. This is un-
avoidable without stronger assumptions about the problem
structure, which are beyond the scope of this work.

Second, it is not possible to precisely place a threshold
on M2 for when all MVCs will become bidirectional, as this
also depends on other factors such as the branching factor
and the solution depth. This can be partly mitigated by com-
paring M2 over different heuristics, as larger values are bet-
ter. While our experimental results suggest that M2 > 9 is
sufficiently high, this will not be universal for every possi-
ble domain. After our primary experimental results we will
return to the impact of solution depth in more detail.

Despite these limitations, as we will show next, we can
still make good predictions using M1-M3 and rules 1-3.

5 Bidirectional Predictions

To validate our analysis, we experiment with different
heuristics in four domains: the 12 pancake puzzle, 4-
peg towers of Hanoi (TOH4), grid maps and road maps.
Columns C–E reported in Table 1 empirically evaluate M1-
M3 on the four domains. In this table, we report average
measurements over 50 random TOH4 instances, 50 hard 12-
pancake instances (Valenzano and Yang 2017), 100 random
road map instances on the map of Colorado, 21.7K instances
of DAO grid maps, and 32.3K instance of grid mazes with
maze corridor width ∈ {1, 4, 16}. All grid maps are taken
from the MovingAI benchmarks (Sturtevant 2012).

In the pancake puzzle we use the GAP heuristic (Helmert
2010), which counts the gaps between adjacent tokens
in the puzzle, and three variants of the GAP heuristic.
GAP\X (Holte et al. 2017), ignores any gaps that involve
the X smallest pancakes. GAP−X subtracts X from the

5

4

3

7
6

2
1

Figure 2: A TOH4 state for which M2 is large.

GAP heuristic (returning max(GAP − X, 0). GAP×X re-
turns the GAP heuristic times X . In TOH4 we use two addi-
tive pattern databases of different sizes. The M −N heuris-
tic adds a heuristic for the larger M disks to a heuristic
for the smaller N disks. In grid problems we use the octile
heuristic, which is the shortest distance between two points
on an 8-connected grid. In the road network instances we
use Euclidean distance if the edge costs are measured by
distance, and Euclidean distance divided by the maximum
speed if edge costs are measured by travel time. We also use
no heuristic in several domains to compare between bidirec-
tional brute force and bidirectional heuristic search.

The goal of the experiments is to use a broad range of
heuristics to illustrate the relationship between the MVC and
M1–M3 along Rules 1–3, not to establish the state-of-art
performance. For this reason we do not report runtimes in
our results. The state-of-art performance and runtimes will
change over time with new heuristics and new hardware, but
the measures proposed here will not.

For each domain and heuristic combination, we measured
M1 and M2 using rM1 = 5, hM2 = 5, where the number of
nodes with inaccurate low heuristic (Sh≤hM2

) for the pan-
cake puzzle and the road network was collected by sampling.
In TOH4 and grid maps we used the direct sampling proce-
dure. M3 was measured using 1,000 samples, where each
sample expanded 100 nodes. rM1 and hM2 are sufficient for
the problems tested here. In state spaces such as the sliding-
tile puzzle, where the branching factor is relatively low and
the solution length is longer, larger values would be more
appropriate, as the first few levels of the search tree contain
only a few nodes. Note that as stated in Section 4.4, optimal
values of rM1 and hM2 cannot be known a priori.

Columns F–J show quantities of the GMX structure: per-
centage of instances in which the MVC is strictly bidirec-
tional (labeled BMVC, column F), i.e., smaller than two uni-
directional forward VC and backward VC, the number of
nodes in the forward and backward VC’s (FVC and BVC,
columns G,H), the minimum per instance among the for-
ward and backward VC’s (I), and the size of the MVC (J).
Columns K–N report the total number of node expansions
(the MVC is only measuring necessary expansions) by state-
of-the-art algorithms, which will be discussed in the next
section. We bold the MVC size if it is smaller than the min-
imum UVC, meaning that the bidirectional MVC is smaller
than the best UVC. We also bold the search algorithm with
the fewest node expansions.

We begin by analyzing rule 1 and 2 on columns A–J.

Rule 1 Rule 1 states that when M1 is high and M2 and
M3 are not, then the problem instance will be weakly bidi-
rectional. If all MVCs are bidirectional they will not be sig-
nificantly smaller than the best UVC. This result is best il-
lustrated in the pancake puzzles with GAP×0.9. With this
heuristic 56% of the problems solved have a bidirectional
MVC, but the average UVC (224) is only 4% larger than the
average MVC (216). With the GAP×0.8 heuristic the per-
centage of problems with a bidirectional MVC decreases,
but M2 also increases, so M2 is no longer low. As a result the
average UVC is 8% larger than the best bidirectional MVC,

286

A B C D E F G H I J K L M N

Domain Heuristic M1 M2 M3 BMVC FVC BVC Min UVC MVC A* Rev-A* NBSε DVCBSε

12-Pancake

GAP 26.4% 4.9 0.0% 0% 10 10 8 8 30 28 101 54
GAP\1 95.9% 82.0 0.0% 64% 1,102 1,233 954 832 1,124 1,267 864 841

GAP\2 97.6% 656.9 0.0% 96% 30,794 39,135 28,371 12,466 32,134 40,876 9,528 8,011

GAP\3 98.7% 2,446.8 0.0% 100% 367,374 454,242 322,294 48,994 379,684 477,463 32,802 25,080

GAP−1 100.0% 34.2 0.0% 74% 228 236 205 187 229 237 241 174

GAP−2 100.0% 160.0 0.0% 100% 3,062 3,159 2,895 1,643 3,085 3,183 1,353 1,269

GAP−3 100.0% 596.7 0.0% 100% 28,853 29,366 27,844 8,406 29,209 29,717 6,441 5,290

GAP×0.9 100.0% 5.1 0.0% 56% 248 255 225 216 249 256 229 204

GAP×0.8 100.0% 34.2 0.0% 48% 2,149 2,212 2,056 1,904 2,150 2,213 1,755 1,712

GAP×0.7 100.0% 160.0 0.0% 88% 16,736 16,985 16,347 11,744 16,737 16,986 9,708 9,330

TOH4(12)

10+2 49.3% 3.8 0.0% 0% 64,264 68,149 59,153 59,153 64,334 68,173 100,080 69,010
8+4 21.1% 9.0 0.0% 34% 456,156 456,439 420,749 382,390 457,401 459,373 411,085 434,347
6+6 3.6% 10.9 0.0% 86% 772,889 796,639 697,965 463,586 789,603 806,767 446,603 525,811
4+8 0.8% 9.6 0.0% 66% 530,936 547,752 480,027 406,480 548,850 568,615 411,212 427,702
2+10 0.0% 3.9 0.0% 2% 162,656 174,659 152,421 152,384 172,088 190,364 199,880 192,271
Zero 99.5% 78,141.6 0.0% 100% 8,262,691 8,560,419 7,826,880 476,455 8,262,691 8,560,419 450,539 425,578

Grids Octile 1.8% 0.0 66.7% 1% 9,525 9,222 7,785 7,754 9,646 9,339 12,136 9,815
DAO Zero 98.3% 504.7 66.7% 100% 19,448 19,935 17,760 15,167 19,466 19,955 16,819 15,946

Grids Octile 49.8% 1.9 94.7% 90% 63,657 63,694 49,257 31,193 63,660 63,698 36,029 49,298
Mazes[1] Zero 92.3% 10,081.4 94.7% 100% 71,455 71,571 57,961 31,263 71,474 71,590 36,034 31,840

Grids Octile 3.8% 0.1 95.7% 69% 97,215 97,072 77,765 62,449 97,228 97,084 70,186 90,301
Mazes[4] Zero 97.5% 5,230.7 95.7% 100% 114,084 114,111 94,678 63,540 114,105 114,133 70,259 65,306

Grids Octile 0.0% 0.3 88.8% 29% 125,496 126,236 108,282 103,841 125,538 126,278 128,572 124,038

Mazes[16] Zero 98.4% 3,843.4 88.8% 100% 144,773 145,445 126,898 109,795 144,801 145,473 129,310 118,757

Road Maps ED 99.5% 1.44 99.8% 16% 72,119 69,461 47,702 47,666 72,119 69,461 69,110 69,461
Distance Zero 99.2% 3,118.3 99.8% 100% 226,041 229,400 184,419 129,484 226,041 229,400 143,428 160,940

Road Maps ED /
speed 98.5% 10.5 99.8% 95% 133,147 128,165 93,645 80,456 133,148 128,166 97,889 128,165

Time Zero 98.5% 6,749.3 99.8% 100% 230,075 227,785 181,105 104,952 230,076 227,786 119,873 111,329

Table 1: Evaluating the critical state measurements and algorithm performance on a variety of domains. Measures G-J are
theoretical measures reporting necessary node expansions, while algorithmic results (K-N) report all node expansions.

a larger difference than with GAP×0.9.

Rule 2 Rule 2 states that when M2 is high, the MVC will
be bidirectional. This rule is true for all brute-force searches
(zero heuristic), and in other domain/heuristic combinations
when M2 is greater than 9. More importantly, when compar-
ing different M2 across two different heuristics, the heuris-
tic with larger M2 has a smaller MVC relative to the best
UVC, although there are some cases the difference between
the bidirectional MVC and the UVC are relatively small. For
instance, with the GAP×0.8 heuristic, in which M2 is 34.2,
the bidirectional MVC is only 8% smaller than the UVC.
Similarly, in the DAO maps with a zero heuristic the bidi-
rectional MVC is only 15% smaller than the UVC.

In TOH4 the 6+6 PDB is the only heuristic/domain com-
bination with large M2 and small M1. It may not be obvious
where the errors measured by M2 arise, so we illustrate them
with an example in Figure 2. In this example, assume that a
4+3 PDB is being used, and that the goal is to stack all disks
on the last peg. The 4-disk PDB will have a value of one,
because in the 4-disk state space (ignoring the top 3 disks) it
only takes one move to reach the goal. The 3-disk PDB will
have a heuristic of zero because all disks are in the goal posi-
tion. Thus, the heuristic in this state is very small, yet it will
take many moves to reach the goal, which is measured by
M2. The 6+6 PDB has many such states with small heuristic
values, so M2 is high. Since very few of them are near the
goal, M1 is low. Thus, we see that M2 is sufficient on its own
to correctly predict a MVC which is bidirectional.

No Rule It is also useful to analyze domain/heuristic com-
binations where none of our rules apply. For instance, in
TOH4 with the 2+10 heuristic M1-M3 are all small. Thus,
as expected, only 2% of the problem instances are bidirec-

tional. Similar analysis holds for the GAP heuristic.

6 Algorithmic Comparisons

Next, we move to solving problems with bidirectional and
unidirectional algorithms. The goal is to evaluate whether a
bidirectional MVC corresponds to better performance for a
bidirectional search algorithm and to evaluate Rule 3. For
a bidirectional search algorithm we experiment with Near-
Optimal Bidirectional Search (NBS) (Chen et al. 2017) and
Dynamic Vertex Cover Bidirectional Search (DVCBS) (Sh-
perberg et al. 2019). The necessary expansions by NBS are
guaranteed to be no more than twice the size of the MVC.
DVCBS dynamically estimates the structure of GMX and at-
tempts to build a vertex cover at runtime, but has no guar-
antees on worst-case performance. The number of nodes
expanded when finding a solution are found in Table 1
(Columns K – N) for forward A*, Reverse A*, NBS and
DVCBS. In state spaces with unit edge costs we use the vari-
ants of these algorithms that perform better given the known
smallest edge cost ε = 1.

In these results the performance of bidirectional search
algorithms like NBS and DVCBS are best when the MVC
is bidirectional. Thus, a bidirectional MVC is predictive of
good performance by bidirectional algorithms. Note that in
these experiments NBS and DVCBS can even perform fewer
expansions than those needed for the MVC because of their
use of ε (Shaham et al. 2018).

Rule 3 Rule 3 predicts that if M3 is high, then due to the
asymmetry, bidirectional search algorithms like NBS will
have better performance even if M1 and M2 are low. In the
Pancake puzzle with the GAP heuristic, NBS is much worse
than A* (3x total expansions and 2x necessary expansions).

287

01

118

2237

31,201

41,981

52,670

63,291

73,567

83,638

93,647

103,740

113,138 0 1

1 18

2 237

3 1,330

4 2,438

5 3,123

6 3,615

7 3,904

8 4,156

9 4,273

10 4,371

11 3,749

gF gB
01

118

2243

32,155

4609

556

610

72

80

90

100

110 0 1

1 18

2 243

3 2,400

4 723

5 36

6 0

7 0

8 0

9 0

10 0

11 0

gF gB

(a) One stronger heuristic (b) Max of weaker heuristics

Figure 3: GMX for Rubik’s cube: one vs several heuristics.

But, in the DAO maps with the octile heuristic, although
only 1% of the problems have a bidirectional MVC, NBS is
only 30% worse than A*. This is attributed to Rule 3 and the
asymmetry in the domain. In maze grids with corridor size
16, M1 and M2 are both low, but NBS still has comparable
performance to A* due to the problem asymmetry.

6.1 Bidirectional Heuristic Search

Barker and Korf (2015) conjectured that bidirectional
heuristic search would never outperform unidirectional
heuristic search or bidirectional brute-force search. There
are several examples where this conjecture is violated in our
experiments - where NBS performs fewer node expansions
than A* and bidirectional brute force search. This occurs in
TOH4 with the 8+4 and 4+8 heuristics and in road maps
with time-based edges (where M1–M3 are all large). While
these heuristics do not currently achieve state-of-art perfor-
mance in these domains, they are still counter-examples to
the conjecture.

7 Comparing Heuristics Strength

In the previous section we experimented across many do-
mains and heuristics, ignoring the memory required by the
different heuristics. In this section we consider the choice of
one large heuristic versus many small heuristics.

Holte et al. (2006) showed that it is better for unidirec-
tional search to take the maximum of a number of weak
heuristics than to use one stronger heuristic. They explained
this by the fact that the maximum of many heuristics tends
to have fewer low h-values then the single stronger heuristic,
and that these improved low h-values were the most impor-
tant in the search.

In bidirectional search this is exactly the opposite. Low
h-values correspond to critical states which lead to a bidi-

rectional MVC. Here, using the single strong heuristic can
be better because bidirectional search can avoid expanding
states with low h-values and benefit from the high h-values.

We demonstrate this in Table 2 on the pancake puzzle
and Rubik’s cube. While GAP is a memory-free heuristic,
we can simulate the use of different sizes PDBs by com-
paring a single GAP\2 heuristic to the maximum of four
GAP\3 heuristics (GAP\3-MAX(4)). In Rubik’s cube we
compare one 7-edge PDB to the maximum of six 6-edges
PDBs (6edges-MAX(6)). The later replicates the experiment
performed by Holte et al. (2006), while adding results on
bidirectional search and the VC of GMX. Table 2 shows ex-
periments on the same 50 pancake instances as used pre-
viously and 50 Rubik’s Cube problem instances built by a
random walk length 12. The average of the following quan-
tities are also reported: BMVC, the forward and backward
VCs, Min UVC, the MVC, and the ratio between the min
UVC and the MVC.

For the 12-pancake problem, observe that the strength of
both heuristics are very similar in terms of the necessary
expansions (MVC). For GAP\2 96% of the problems have
a bidirectional MVC. The average Min UVC is more than
twice the size of the average MVC. However, for GAP\3-
MAX(4) only 8% of the problems have a bidirectional MVC
and the average Min UVC is almost identical to the size of
the average MVC.

In Rubik’s cube, the maximum of six 6-edge PDBs dom-
inated the single 7-edge PDB for both unidirectional and
bidirectional search. But, while unidirectional search is close
to optimal with the maximum of weaker heuristics, it re-
quires more than twice the MVC node expansions with the
single larger heuristic which has many critical states.

Figure 3 shows sample GMX graphs for a Rubik’s cube
instance. With the single larger heuristic there are many crit-
ical states and the MVC is bidirectional, while with the max
of many small heuristics the MVC is unidirectional and there
are no critical states in GMX.

Thus, the choice of heuristics can have an important im-
pact on whether bidirectional search performs well on a
problem instance. The heuristics that work well for bidi-
rectional search may have many critical states, as these can
be avoided in a bidirectional search, while maximizing over
several different heuristics helps avoid critical states, help-
ing unidirectional search. A larger study is needed to exam-
ine which approach is more memory efficient. In particular,
it is unclear whether a set of very small heuristics directly
targeting critical states would have significant impact.

8 Solution Cost and Bidirectional MVC

Given the measures here, we then considered whether we
could predict if hard problems previously unsolved might
be solved with bidirectional search. In particular, Schütt,
Döbbelin, and Reinefeld (2013) generated a problem in-
stance for the 24-puzzle with a solution cost lower bounded
by 140. Despite having a very strong cluster of computer
nodes, they failed to solve this problem instance after run-
ning IDA* for three months using the strong 8-8-8 PDB
heuristic and expanding 42, 854, 920, 933, 846 nodes.

288

Domain Heuristic BMVC FVC BVC Min Uni VC MVC Uni VC
MVC

12-Pancake
GAP\2 96% 30,794 39,135 28,371 12,466 2.28

GAP\3-MAX(4) 8% 13,715 13,354 12,465 12,188 1.02

Rubik’s Cube
7edges 100% 60,912 65,201 46,175 20,085 2.30

6edges-MAX(6) 62% 4,090 4,012 3,903 3,885 1.00

Table 2: Comparing maximum of several weak heuristics over one stronger heuristic for uni- and bi-directional search.

Cost A* Rev-A* Best-UNI DVCBS NBS ratio
40-49 625,329 392,144 378,185 521,638 517,062 1.53
50-54 3,517,218 2,870,299 2,549,486 3,273,345 3,365,651 1.50
55-59 17,179,068 10,455,729 9,562,378 11,92,4392 12,466,506 1.49
60-66 67,467,007 45,083,184 37,995,389 52,370,886 52,627,119 1.47

Table 3: Performance on the 15-puzzle clustered by cost

In our tests on the 24-puzzle and the 15-puzzle with vari-
ous heuristics we found that M1–M3 all returned small val-
ues, suggesting that bidirectional search would not perform
well. But, as was suggested in Section 4.4, when the problem
instances are extremely difficult to solve and their solution
depth is large, such as the mentioned problem instance, ad-
ditional analysis can be performed.

Korf, Reid, and Edelkamp (2001) observed that a heuristic
does not prune nodes in the first few levels of the search tree
and only takes effect as the search deepens. As the optimal
solution cost grows larger, the number of levels for which
a heuristic has no pruning power increases. Thus, while the
number of states in the shallow levels of the search will be
unchanged as the problem difficulty increases, the number
of critical states can continue to grow.

We demonstrate this phenomenon in Table 3 on the 15-
puzzle using Korf’s set of 100 instances (Korf 1985). The
first column of the table is the solution cost, clustered into
buckets. The next five columns show the number of neces-
sary expansions resulted by different algorithms using the
Manhattan distance heuristic. For unidirectional search al-
gorithms we experimented with forward A*, backward A*
and with Best-UNI (which is the best of these on a per in-
stance basis). For bidirectional search we experimented with
DVCBS and NBS. Finally, the last column is the ratio be-
tween the number of nodes expanded by NBS and the Best-
UNI algorithm. As can be seen from the results, this ratio
decreases as the solution cost increases. Similar experiments
with a 4-5-5-5 PDB heuristic confirm this trend. Thus, even
though our measurements suggest that this problem instance
is unidirectional, it is still possible that bidirectional search
would perform well on this problem due to its overall diffi-
culty and large solution depth. It is a matter of future work
to solve this problem and see.

9 Conclusions

Our results suggest that inexpensive measures can be used to
predict the performance of bidirectional search algorithms,
in particular by looking for critical states in the state space.
Future work in this direction will look more deeply into
the impact of the problem difficulty, and will also look at

how heuristics are constructed in planning, where automated
heuristic construction may result in many critical states, as
bidirectional search has been successful in this context (Tor-
ralba, López, and Borrajo 2016). Finally, it is important to
study the choice of heuristics. Current heuristics are opti-
mized for unidirectional search, but different methods for
building heuristics may favor bidirectional search.

Acknowledgments

We acknowledge the support of CIFAR and the Natu-
ral Sciences and Engineering Research Council of Canada
(NSERC). This work was also supported by Israel Science
Foundation (ISF) grant #844/17 to Ariel Felner and Eyal
Shimony, by BSF grant #2017692, by NSF grant #1815660
and by the Frankel center for CS at BGU.

References

Alcázar, V.; Riddle, P.; and Barley, M. 2020. A unifying
view on individual bounds and heuristic inaccuracies in bidi-
rectional search. In AAAI Conference on Artificial Intelli-
gence.
Barker, J. K., and Korf, R. E. 2015. Limitations of front-to-
end bidirectional heuristic search. In AAAI, 1086–1092.
Chen, J.; Holte, R. C.; Zilles, S.; and Sturtevant, N. R.
2017. Front-to-end bidirectional heuristic search with near-
optimal node expansions. In IJCAI. Also avaialble at
http://arxiv.org/abs/1703.03868.
Culberson, J., and Schaeffer, J. 1996. Searching with pattern
databases. In Proceedings of the 11th Biennial Conference
of the Canadian Society for Computational Studies of Intel-
ligence, volume 1081 of Lecture Notes in Computer Science,
402–416. Springer.
Dechter, R., and Pearl, J. 1985. Generalized best-first search
strategies and the optimality of A*. J. ACM 32(3):505–536.
Eckerle, J.; Chen, J.; Sturtevant, N.; Zilles, S.; and Holte,
R. 2017a. Sufficient conditions for node expansion in bidi-
rectional heuristic search. In International Conference on
Automated Planning and Scheduling (ICAPS).

289

Eckerle, J.; Chen, J.; Sturtevant, N. R.; Zilles, S.; and Holte,
R. C. 2017b. Sufficient conditions for node expansion in
bidirectional heuristic search. In ICAPS.
Helmert, M. 2010. Landmark heuristics for the pancake
problem. In Symposium on Combinatorial Search, 109–110.
Holte, R. C.; Felner, A.; Newton, J.; Meshulam, R.; and
Furcy, D. 2006. Maximizing over multiple pattern databases
speeds up heuristic search. Artif. Intell. 170(16-17):1123–
1136.
Holte, R. C.; Felner, A.; Sharon, G.; Sturtevant, N. R.; and
Chen, J. 2017. Bidirectional search that is guaranteed to
meet in the middle. Artificial Intelligence Journal (AIJ), In
press.
Korf, R. E., and Felner, A. 2002. Disjoint pattern database
heuristics. Artificial Intelligence 134:9–22.
Korf, R. E.; Reid, M.; and Edelkamp, S. 2001. Time
complexity of iterative-deepening-A*. Artificial Intelligence
129(1–2):199–218.
Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artificial Intelligence 27(1):97–
109.
Lelis, L. H. S.; Stern, R.; and Sturtevant, N. R. 2014.
Estimating search tree size with duplicate detection. In
Edelkamp, S., and Barták, R., eds., Proceedings of the Sev-
enth Annual Symposium on Combinatorial Search, SOCS
2014, Prague, Czech Republic, 15-17 August 2014. AAAI
Press.
Schütt, T.; Döbbelin, R.; and Reinefeld, A. 2013. Forward
perimeter search with controlled use of memory. In Rossi,
F., ed., IJCAI 2013, Proceedings of the 23rd International
Joint Conference on Artificial Intelligence, Beijing, China,
August 3-9, 2013, 659–665. IJCAI/AAAI.
Shaham, E.; Felner, A.; Chen, J.; and Sturtevant, N. R. 2017.
The minimal set of states that must be expanded in a front-
to-end bidirectional search. In SoCS, 82–90.
Shaham, E.; Felner, A.; Sturtevant, N. R.; and Rosenschein,
J. S. 2018. Minimizing node expansions in bidirectional
search with consistent heuristics. Symposium on Combina-
torial Search (SoCS) 81–89.
Shperberg, S.; Felner, A.; Sturtevant, N. R.; Hayoun, A.; and
Shimony, E. S. 2019. Enriching non-parametric bidirec-
tional search algorithms. In AAAI Conference on Artificial
Intelligence, 2379–2386.
Sturtevant, N. R. 2012. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and AI in
Games 4(2):144–148.
Torralba, A.; López, C. L.; and Borrajo, D. 2016. Abstrac-
tion heuristics for symbolic bidirectional search. In IJCAI,
3272–3278.
Valenzano, R. A., and Yang, D. S. 2017. An analysis and
enhancement of the gap heuristic for the pancake puzzle. In
Symposium on Combinatorial Search, 109–118.

290

